Skip to main content

Discovery of Black Hole Triple System Challenges Current Understanding of Black Hole Formation.

 



In a groundbreaking study published in *Nature*, physicists from MIT and Caltech have revealed the first observed "black hole triple" system, prompting new questions about the formation of black holes. This unique system features a central black hole that is actively consuming a small star every 6.5 days, while a second, more distant star orbits the black hole every 70,000 years.


Traditionally, black holes are believed to form from the explosive deaths of massive stars in a process known as supernovae. However, the presence of the outer star raises significant questions about this narrative. If the central black hole had formed through a typical supernova, it would have expelled nearby objects due to the immense energy released. The fact that this second star remains in orbit suggests a different origin: a more gentle “direct collapse,” where a star collapses under its own gravity without a violent explosion.


Kevin Burdge, a Pappalardo Fellow at MIT and co-author of the study, noted, “We think most black holes form from violent explosions of stars, but this discovery helps call that into question.” The research team, which also includes several MIT physicists, emphasizes that this could be the first evidence of a black hole born from direct collapse.


The discovery of the triple system was somewhat serendipitous. While searching for new black holes in the Milky Way, Burdge examined images of V404 Cygni, a well-studied black hole about 8,000 light years away. Upon inspection, he identified two distinct sources of light, leading to the realization that they belonged to the central black hole and its inner star, with the second light coming from a distant companion.


Using data from the Gaia satellite, the researchers confirmed that the two stars are gravitationally bound, as they moved in tandem over the past decade. Burdge calculated the odds of this alignment as approximately one in ten million, solidifying the existence of a triple system.


To understand how this configuration could arise, the team conducted simulations of various scenarios for the black hole's formation. Their results overwhelmingly favored the direct collapse model, as most simulations indicated this method would retain the outer star, unlike the supernova scenario.


Additionally, the outer star is nearing the end of its life cycle, transitioning into a red giant phase, which allowed the researchers to estimate the age of the entire system at around 4 billion years. This insight not only provides a timeline for the black hole's formation but also offers a rare glimpse into the evolution of such celestial bodies.


The discovery of this black hole triple system is a significant advancement in astrophysics, challenging existing paradigms of black hole formation and suggesting that there may be more such systems waiting to be discovered. As Burdge aptly put it, “This system is super exciting for black hole evolution, and it also raises questions of whether there are more triples out there.”

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...