Skip to main content

Disparity in hubble constant calculations is not a fluke.

 



The Hubble Space Telescope has in 2019 provided data that significantly reduces the chance that the current expansion rate of the Universe, as measured by Hubble, does not match the expected rate based on conditions from shortly after the Big Bang over 13 billion years ago.The NASA/ESA Hubble Space Telescope has revolutionized the way we calculate accurate distances to galaxies, by observing Cepheid variables in the Large Magellanic Cloud. These pulsating stars act as milepost markers, which researchers can use to measure how fast the Universe is expanding over time - a value known as the Hubble constant. Before Hubble was launched in 1990, estimates of the Hubble constant varied greatly, but thanks to its precision observations, the uncertainty was reduced to 10% by the late 1990s. Subsequent refinements have further reduced that uncertainty to a remarkable 1.9%, allowing scientists to gain a greater understanding of the cosmos.


This research suggests that the discrepancy between measurements of the Universe’s expansion rate today and what was expected based on observations of the early Universe’s expansion is highly unlikely to be a fluke, with just a 1 in 100,000 chance. This estimate is a significant improvement from a previous one last year, which was 1 in 3,000. Lead researcher and Nobel Laureate Adam Riess of the Space Telescope Science Institute and Johns Hopkins University calls it the most exciting development in cosmology in decades. The team’s calculations of the Hubble constant remain inconsistent with the expected value derived from Planck’s observations of the early Universe’s expansion, with the new estimate being 74.03 kilometres per second per megaparsec - 9 percent faster than what Planck gave.


Adam Riess and his team used an efficient observing technique called Drift And Shift (DASH) to analyse the light from 70 Cepheid variables in the Large Magellanic Cloud. By observing the periodic variations of these stars, astronomers can use them as cosmic mileposts to calculate their luminosity and hence distance. Riess and his team combined their results with those of the Araucaria Project, a collaboration between astronomers from institutions in Europe, Chile, and the United States, to measure the distance to the Large Magellanic Cloud by observing the dimming of light as one star passes in front of its partner in a binary-star system. The results of this study have perplexed astronomers because they conflict with cosmological models which suggest that observed values of the expansion of the Universe should be the same as those determined from the Cosmic Microwave Background. As such, there is still no conclusive answer as to why this discrepancy exists - various scenarios such as dark matter or dark energy have been proposed, but are yet to be proven. Riess and his team intend to continue using Hubble to reduce the uncertainty in their measure of the Hubble constant in the hopes of decreasing it to 1 percent.

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...