Skip to main content

Successfully landing on Mars of NASA Perseverance Rover and Ingenuity Mars helicopter.


 Successful Landing of Persistence Rover and Ingenuity Mars Helicopter to Mars, Successful Touchdown in Mission Control in NASA's Jet Propulsion Laboratory at 3:55 pm was confirmed, taken by Perseverance Rover, first image shows,  That Perseverance Rover is perfectly fine, and is ready to travel to Mars. NASA Science Associate Administrator Thomas Zurbuchen says that due to the exciting events of today, it is another step for the first sample from carefully documented locations on another planet to return to Earth.

On July 30, 2020, the Fortitude Rover was launched from Cape Canaveral Space Force Station in Florida, and on February 9, the Fortitude Rover successfully entered Mars orbit. The Perseverance Rover is designed to explore an ancient river delta called the Jazero Crater, the Perseverance Rover with its 2,263-pound (1,026 kg) robotic geologist and astrobiologist in his two-year 'Gizero Crater' The test will have to undergo several weeks before starting the science investigation.

The Perseverance Rover will examine the reef and sediments of the ancient lakebed and river delta of Jezero, to mark the geology of the region and the climate of the past, the purpose of this investigation is to promote astronomy, with signs of ancient microbes  The search is also included. The Mars sample Returncampage, being planned by NASA and ESA (European Space Agency), will allow scientists on Earth to study samples collected strongly to discover definite signs of past life using instruments.

The Perseverance Rover equipped with seven elementary science equipment, and sent to Mars with more cameras, such a complex sample caching system - the first sent into space, the Zzero region for fossilized remains of ancient microscopic Martian life from the Perseverance Rover  Will scour

Mastcam-Z is an advanced camera system with panoramic and stereoscopic imaging capabilities as well as zooming capability. This device will assist in determining the mineralogy of the Martian surface as well as the rover operation.

Mastcam-Z is an advanced camera system with panoramic and stereoscopic imaging capabilities as well as zooming capability. This device will assist in determining the mineralogy of the Martian surface as well as the rover operation.

Supercam, which can help provide imaging, chemical composition analysis and mineralogy. It is capable of analyzing distant objects, such as rocks and will help detect the presence of organic compounds in the regolith.

Planetary Instrument for X-Ray Lithochemistry (PIXL) Lithochemistry designed for the Persistence Rover as part of the Mars 2020 mission, it is an X-ray fluorescence spectrometer that provides information on the surface of Mars with a fundamental structure  Will determine, predictably, that PIXL will provide capabilities allowing more detailed detection and analysis of chemical elements than ever before.

For Organics and Chemicals (SHERLOC), it will scan the habitable environment with Raman and Luminescence, an ultraviolet Raman spectrometer, the spectrometer uses an ultraviolet (UV) laser to determine the level of mineralogy and detect organic compounds. SHERLOC is the first UV Raman spectrometer to fly on the surface of Mars, which will provide complementary measurements with other instruments in the payload, SHERLOC includes a high-resolution color camera for microscopic imaging of the surface of Mars.

The Mars Oxygen ISRU Experiment (MOXIE), an exploration technology testing system, will produce oxygen from Martian atmospheric carbon dioxide.

Mars Environmental Dynamics Analyzer (MEDA) is a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity, and dust size molecules.

Mars' subsurface experiment (RIMFAX) is for radar imager, which will provide centimeter-scale resolution of a geological structure.

A primary objective for the mission of persistence on Mars is astronomy research, which involves the discovery of signs of ancient microbial life. The Persistence Rover will mark the geology and past climate of Mars, the first mission to collect and cache Martian rock and regoliths, paving the way for human exploration of the Red Planet.

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...