Skip to main content

Astronomers Uncover Surprising Findings About FU Orionis Using Hubble's Ultraviolet Observations.

 

This artist's concept depicts the early stages of FU Orionis' outburst, surrounded by a material disk. Using Hubble's ultraviolet capabilities, astronomers discovered that the inner disk touching the star is unexpectedly hot—16,000 kelvins—almost three times the Sun’s surface temperature, nearly double what was previously predicted.


In 1936, astronomers were baffled when the young star FU Orionis (FU Ori) suddenly became a hundred times brighter in a matter of months. Unlike an exploding star, FU Ori’s luminosity gradually declined, but it remained a star of interest for decades. Now, a team of astronomers has used NASA’s Hubble Space Telescope to delve deeper into the interaction between FU Ori’s surface and the accretion disk feeding gas to the growing star. Their groundbreaking findings challenge existing models and offer new insights into the nature of these eruptive stars.


The Hubble observations, made using the telescope's Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS) instruments, produced the first far-ultraviolet and new near-ultraviolet spectra of FU Ori. The team had aimed to examine the temperature of the accretion disk’s inner edge but were surprised to find the impact region between the disk and the star to be much hotter than previously predicted.


“We were hoping to validate the hottest part of the accretion disk model, but we were certainly not expecting what we saw,” said Lynne Hillenbrand, co-author of the study from Caltech. “The star was much brighter in the ultraviolet than we predicted — that was the big surprise.”


FU Ori is a member of a class of young, eruptive stars known as FU Orionis stars, which are part of the broader T Tauri star category. These stars are in their early formation stages and are accumulating material from their surrounding accretion disks. However, unlike classical T Tauri stars, FU Ori stars experience instability in their disks, leading to dramatic changes in the rate of material accretion. This instability causes the disk to eventually touch the star’s surface, resulting in significant increases in brightness. During outbursts, the disk even outshines the star itself.


The team’s findings revealed that the region where the disk impacts FU Ori's surface is at a scorching temperature of 16,000 kelvins, nearly three times the surface temperature of our Sun. This temperature is almost double what previous models predicted. The team proposes that this heat is generated by a shockwave produced when the disk's material impacts the star’s surface, emitting an excess of ultraviolet light.


“This sizzling temperature is nearly twice the amount previous models have calculated,” explained Adolfo Carvalho, lead author from Caltech. “It challenges and encourages us to rethink how this intense temperature could be explained.”


The implications of these findings extend beyond stellar physics and into the realm of planet formation. FU Ori’s dramatic outbursts could significantly influence the evolution of planets forming in its vicinity. While planets far from the star may survive the outbursts and inherit chemicals from the accretion disk, planets forming close to FU Ori risk being destroyed by the intense heat and radiation. Such planets could be rapidly drawn inward and either merge with the star or be vaporized in the process.


Further analysis of the Hubble data is underway, with researchers examining the spectral lines of various elements to gain deeper insights into the dynamics of gas inflows and outflows near FU Ori. These findings contribute to the growing body of knowledge about the early stages of star and planet formation.


“The Hubble data has allowed us to see further into the engine of this fascinating star-type than ever before,” said Hillenbrand. "This is a rich area of study, and with Hubble’s size and wavelength coverage, we are able to look deeper into the star’s environment than we could have ever hoped."


These new discoveries have been published in The Astrophysical Journal Letters.


The Hubble Space Telescope, a joint project of NASA and the European Space Agency (ESA), continues to make groundbreaking discoveries after more than three decades in operation. Managed by NASA's Goddard Space Flight Center, Hubble’s work is supported by the Space Telescope Science Institute and Lockheed Martin Space.

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...