Skip to main content

Astronomers Detect First Brown Dwarf Candidates Outside the Milky Way.

 



An international team of astronomers has made a groundbreaking discovery using the James Webb Space Telescope (JWST), identifying the first rich population of brown dwarf candidates in the star cluster NGC 602, located in the Small Magellanic Cloud, approximately 200,000 light-years from Earth.


NGC 602, a young star cluster, serves as an analogue for conditions in the early Universe, characterized by low metallicity and the presence of dense dust clouds and ionised gas indicative of ongoing star formation. This environment, along with the cluster's HII region N90, offers a unique opportunity to study star formation in a setting vastly different from our solar neighborhood.


Led by Peter Zeidler from AURA/STScI for the European Space Agency, the team’s observations revealed candidates for young brown dwarfs—objects too massive to be considered planets but not quite stars, with masses ranging from about 13 to 75 times that of Jupiter. “Only with the incredible sensitivity and spatial resolution of JWST can we detect these objects at such distances,” Zeidler noted, highlighting the unprecedented capabilities of the telescope.


Elena Manjavacas, also from AURA/STScI, emphasized that this discovery marks the first identification of brown dwarfs outside our galaxy, expanding the known population of these objects beyond the approximately 3,000 currently identified within the Milky Way.


The study combined data from both Hubble and Webb, showcasing the complementary strengths of these telescopes. Antonella Nota, a team member and former Webb Project Scientist for ESA, explained that while Hubble indicated the presence of young low-mass stars in NGC 602, it was only with Webb that the team could fully appreciate the formation of substellar objects in the cluster.


Zeidler further noted that the findings support the theory that the mass distribution of bodies below the hydrogen burning limit continues the pattern seen in stellar formation, indicating that brown dwarfs form similarly to stars but do not accumulate enough mass to ignite nuclear fusion.


The team’s observations, conducted in April 2023, included a new image from Webb’s Near-InfraRed Camera (NIRCam), illustrating the cluster's stars, young stellar objects, and the intricate surrounding gas and dust structures, all while accounting for contamination from background galaxies.


“Studying these young, metal-poor brown dwarfs in NGC 602 brings us closer to understanding the formation of stars and planets in the early Universe,” stated Elena Sabbi of NSF's NOIRLab and the University of Arizona.


As the first substellar objects detected outside the Milky Way, these findings pave the way for future discoveries that could reshape our understanding of star and planet formation. The research has been published in The Astrophysical Journal as part of the JWST GO programme 2662.

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...