Skip to main content

Aditya-L1's SUIT and VELC Capture Solar Fury.

During the week of May 8 – 15, 2024, the active region AR13664 on the Sun unleashed numerous X-class and M-class flares, accompanied by Coronal Mass Ejections (CMEs) on May 8 and 9. This culminated in a significant geomagnetic storm on May 11, 2024. Aditya-L1's remote sensing payloads, SoLEXS and HEL1OS, captured these events on May 8-9, while the in-situ payloads, ASPEX and MAG, recorded them on May 10-11 as the spacecraft passed through L1. ISRO, along with Chandrayaan-2, XPoSat, and the USO-PRL ground-based facility, reported these observations.


Unfortunately, Aditya-L1's Solar Ultra Violet Imaging Telescope (SUIT) and Visible Emission Line Coronagraph (VELC) were in baking and calibration modes respectively during May 10-11, but resumed observations on May 14 after completing their intended operations.Observations by Chandrayaan-2, XPoSat, and ground-based facilities supported these findings.


SUIT Observations.

SUIT (Solar Ultra Violet Imaging Telescope) captured images of the Sun in various narrow and broad UV bands:


Figure 1: Mg II k line (NB3): Highlights bright, active regions on the solar disk.

Sun in Mg II k Line (NB3) : This image captures the Sun's active regions in the Mg II k line, highlighting bright spots on the solar disk. These regions indicate areas with intense magnetic activity, often the origin of large solar flares due to magnetic field variations. As the Sun approaches its solar maximum, increased activity is evident, particularly around the equator.


Figure 2: Mg II h line (NB4): Shows similar active regions as NB3.

Sun in Mg II h Line (NB4): The NB4 image highlights bright, active regions on the Sun, indicating magnetically active areas. These regions are potential origins for solar flares due to magnetic field changes. As the Sun moves towards its solar maximum, increased activity is visible, especially around the equator.


Figure 3: Narrow Band 276 nm (NB2): Reveals sunspots and plages.

Sun in Narrow Band 276 nm (NB2): This image shows continuum emission highlighting sunspots in active regions and surrounding plages, indicating areas of intense solar activity.


Figure 4: Narrow Band 283 nm (NB5): Differentiates sunspots and magnetic structures at varying atmospheric heights.


Sun in Narrow Band 283 nm (NB5): This image shows sunspots and plages in active regions, with brightness variations different from the 276 nm band. This difference arises from the narrow bands probing different atmospheric heights, revealing structural differences in magnetic tubes.


Figure 5: Narrow Band 300 nm (NB6): Displays sunspots with distinct umbra and penumbra.


Sun in Narrow Band 300 nm (NB6): This image captures sunspots and surrounding plage regions in active areas. The sunspots display distinct umbra (dark centers) and penumbra (lighter surrounding areas).


Figure 6: Broad Band 320-360 nm (BB3): Probes UV continuum emission from the chromosphere.

Sun in Broad Band 320-360 nm (BB3)This image probes the UV continuum emission from the chromosphere, covering a wide range of depths in the solar atmosphere. It prominently displays sunspots on the disk and limb.


Figure 7: VELC Observations.

VELC (Visible Emission Line Coronagraph) performed raster scans of the solar corona on May 14, 2024, capturing activities at 5303 Angstrom . The image highlights the location of AR 13664, showing detailed coronal structures while blocking the bright light from the solar photosphere.

VELC observations made on May 14, 2024, at 5303 Angstrom. AR 13664 location is marked in this raster image as a box.

VELC Observations in 5303 Ångström: On May 14, 2024, VELC conducted raster scans of the solar corona in the 5303 Ångström emission line. The resulting image captures coronal activities, with the AR 13664 location marked. The scan, assembled from wavelength-averaged slit images, took about 20 minutes using four slits to cover different regions simultaneously. The yellow open circle marks the solar photosphere edge, while the black filled circle indicates the occulting disk used to block bright light from the photosphere, revealing faint coronal structures.


Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...