Skip to main content

Hubble's data reveal a large unseen population of small asteroids.

 


The image of the barred spiral galaxy UGC 12158, captured by the Hubble Space Telescope, features a distinctive appearance reminiscent of a white marking pen streak. However, this effect is the result of a foreground asteroid passing through Hubble's field of view during multiple time exposures. The dashed pattern evident in the galaxy's image indicates the presence of several exposures. The asteroid's curved trail is due to parallax, a consequence of Hubble's orbital motion around Earth, creating the illusion of its movement along a curved path. Positioned within the asteroid belt of our solar system, this uncharted asteroid is approximately 10 trillion times closer to Hubble than the distant galaxy it photobombed. Rather than a hindrance, such occurrences provide valuable data for astronomers conducting a census of the solar system's asteroid population.


Scattered across the cosmic landscape like boulders, rocks, and pebbles, asteroids vary widely in size, making their cataloging a challenging task. Unlike stationary objects, these celestial wanderers dart along their orbits around the Sun, evading easy observation. However, astronomers recently undertook a treasure hunt using a trove of archived images captured by NASA's Hubble Space Telescope. Spanning 19 years and consisting of 37,000 images, this archival goldmine revealed a previously unseen population of smaller asteroids. Their diligent search yielded 1,701 asteroid trails, with a staggering 1,031 of them previously unrecorded. Notably, around 400 of these newfound celestial objects measure below 1 kilometer in size, shedding light on the diverse composition of the asteroid belt.


Volunteers from across the globe, known as "citizen scientists," played a crucial role in identifying this treasure trove of asteroids. Collaborating with professional scientists, their efforts were augmented by machine learning algorithms, marking a novel approach to uncovering asteroids in astronomical archives spanning decades. According to lead author Pablo García Martín of the Autonomous University of Madrid, Spain, this collective effort has revealed a surprising abundance of candidate objects, shedding light on the previously elusive population of main belt asteroids. This newfound understanding holds significance in refining evolutionary models of our solar system.


The extensive, random sample obtained offers fresh perspectives on the asteroid belt's formation and evolution. The prevalence of small asteroids lends support to the notion that they are remnants of larger bodies shattered through collisions, akin to fragments of smashed pottery, a process spanning billions of years. An alternative theory suggests that these smaller fragments originated billions of years ago, yet questions linger regarding the mechanisms preventing their aggregation into larger sizes from accumulating dust in the planet-forming circumstellar disk around our Sun. Co-author Bruno Merín of the European Space Astronomy Centre in Madrid, Spain, highlights the potential of collision signatures to test the current main belt population hypothesis.


Can capture wandering asteroids through their telltale trails in the Hubble exposure.



Hubble's rapid orbit around Earth enables it to capture wandering asteroids by detecting their distinctive trails in its exposures. These asteroids, known as "photobombers," leave unmistakable curved streaks across Hubble's photographs, easily distinguishable from other celestial objects. As Hubble observes an asteroid, its changing viewpoint, combined with the asteroid's movement along its orbit, creates curvature in the streaks. Scientists leverage this phenomenon to calculate the distances to the asteroids and approximate the shapes of their orbits.


Most of the asteroids captured reside within the main belt, situated between the orbits of Mars and Jupiter. Their brightness, measured by Hubble's sensitive cameras, allows for size estimation when compared with their distance. Remarkably, the faintest asteroids in the survey are approximately one forty-millionth the brightness of the faintest star visible to the human eye.


Bruno Merín explains, "Asteroid positions change with time, and therefore you cannot find them just by entering coordinates, because at different times, they might not be there." Recognizing the challenge of manually sifting through vast archives of asteroid images, astronomers collaborated with over 10,000 citizen-science volunteers to scour the extensive Hubble archives.


In 2019, an international team of astronomers initiated the Hubble Asteroid Hunter project, a citizen-science endeavor aimed at identifying asteroids in archival Hubble data. Developed in partnership with the Zooniverse platform and Google, this initiative leverages the collective efforts of amateur astronomers worldwide to contribute to asteroid research.


This graph is based on Hubble Space Telescope archival data that was used to identify a large unseen population of very small asteroids in their tracks.



The graph presented here is derived from an analysis of Hubble Space Telescope archival data, revealing a previously overlooked population of diminutive asteroids in motion. These asteroids, initially unnoticed, inadvertently disrupted observations of background stars and galaxies within Hubble images. To uncover this hidden bounty, an extensive search effort combed through 37,000 Hubble images spanning nearly two decades. This exhaustive task was made possible through the collaboration of "citizen science" volunteers and artificial intelligence algorithms. The result was the identification of 1,701 asteroid trails belonging to previously undetected asteroids, marking a significant discovery in astronomical research.


A remarkable total of 11,482 citizen-science volunteers contributed nearly 2 million identifications, forming the basis for training an automated algorithm to recognize asteroids through artificial intelligence. This innovative approach holds promise for application in analyzing other astronomical datasets, ushering in new possibilities for discovery. Moving forward, the project aims to delve deeper into the streaks left by these previously unknown asteroids, seeking to characterize their orbits and investigate properties such as rotation periods. Given that many of these asteroid streaks were captured by Hubble years ago, it is currently impractical to track them for orbit determination. The significant findings from this endeavor have been published in the journal Astronomy and Astrophysics.


For those interested in participating in citizen science projects related to NASA, opportunities abound worldwide and are not limited to U.S. citizens or residents. To learn more about how to get involved, visit https://science.nasa.gov/citizen-science/.


Celebrating over three decades of operation, the Hubble Space Telescope remains at the forefront of astronomical exploration, continuously uncovering insights that shape our understanding of the universe. A testament to international collaboration, Hubble is a joint project between NASA and the European Space Agency (ESA). NASA's Goddard Space Flight Center in Greenbelt, Maryland, oversees the telescope and its mission operations, with support from Lockheed Martin Space in Denver, Colorado. Additionally, the Space Telescope Science Institute (STScI) in Baltimore, Maryland, operated by the Association of Universities for Research in Astronomy, conducts Hubble's science operations on behalf of NASA.





Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...