Skip to main content

In 2024, the Great Lakes reach historic lows.

 



In late February or early March each year, the Great Lakes typically witness their annual peak in ice coverage. However, the year 2024 marked an anomaly as the lakes were notably devoid of ice during this period. Unusually warm winter conditions and above-average surface water temperatures contributed to this phenomenon, resulting in historically low ice cover. Satellite-based measurements, dating back to 1973, have consistently recorded an average winter extent exceeding 40 percent ice coverage. Yet, by late February 2024, the ice cover reached only about one-tenth of this average maximum.The VIIRS (Visible Infrared Imaging Radiometer Suite) sensor aboard the Suomi NPP satellite captured this striking image of the lakes on February 24, 2024, highlighting the significant departure from the norm.


The freezing patterns of the Great Lakes exhibit considerable variability, with instances like 2014 witnessing coverage exceeding 80 percent. Nevertheless, a discernible trend has emerged since 1973, indicating a decline in ice levels. Data from NOAA's Great Lakes Environmental Research Laboratory (GLERL) reveals an approximate 5 percent decrease per decade in annual maximum ice coverage. This downward trajectory is attributed to warmer winter conditions prevalent in the Great Lakes region, fostering more frequent occurrences of years with lower ice extents.


Great Lakes,from 1973 to 2024.





The provided chart illustrates the ice coverage during the 2023–2024 winter season (depicted in red) in comparison to the patterns observed over the past 50 winters. The line distinctly reflects the unusually warm start to the current ice season. Typically, the first cold air masses sweep over the upper Midwest in December, initiating the cooling of lake water—a process known as "priming." However, in December 2023, this priming did not occur, leading to the lowest January ice cover on record in 2024. Subsequently, when an arctic chill enveloped much of the U.S. in mid-January, the ice cover reached its probable season maximum, peaking at approximately 16 percent, only to dissipate as warmer temperatures returned.


Jia Wang, an ice climatologist at GLERL, highlights the significant correlation between air temperatures and ice cover over the Great Lakes. Exploring the intricate relationship further, Wang identifies four patterns of climate variability influencing temperatures in the region. In the current year, a noteworthy alignment occurs, with three out of the four patterns—El Niño, the Atlantic Multidecadal Oscillation, and the Pacific Decadal Oscillation—simultaneously contributing to warming effects on the Great Lakes, further impacting the observed patterns of ice cover.


The absence of ice on the Great Lakes not only renders shorelines and infrastructure more vulnerable to damage from powerful wind and waves but also exposes certain fish species to increased risk during their spawning season, lacking the protective barrier that ice cover typically provides against predators. Moreover, the repercussions extend to water levels, as diminished ice cover may facilitate heightened evaporation. As of late February, however, NOAA reported no significant impact on water levels. The similarity between lake and air temperatures has contributed to keeping evaporation rates low, mitigating potential consequences on water levels at this point in the season.


As the Great Lakes ice season extends through March, NOAA experts suggest the potential for sporadic bursts of arctic air that could induce periods of ice formation. Despite this possibility, these cold air events are anticipated to be transient, and a significant shift in weather patterns would be necessary to reverse the current below-average trend in ice coverage for this season. The NASA Earth Observatory images, credited to Michala Garrison and Lauren Dauphin, utilize VIIRS data from NASA EOSDIS LANCE, GIBS/Worldview, along with lake ice data from NOAA's Great Lakes Environmental Research Laboratory. The story is credited to Lindsey Doermann.


Comments

Popular posts from this blog

In the triple-star system, KOI-5Ab is seen orbiting the primary star...

  KOI-5Ab continues to be a topic of discussion for researchers, as koi-5Ab has been seen orbiting the primary Star, confirming it has also been announced.  koi-5ab revolves around the primary star, it was thought to be a planet half the size of Saturn in a planetary system, and was the only other planet candidate to be detected by the KOI-5Ab mission. Kepler mission operations were initiated by NASA in 2009, by the end of spacecraft operations in 2018, the Kepler spacecraft had discovered 2,394 exoplanets, or planets orbiting stars beyond our sun, and about 2,366 exoplanets such  There are also those, which are still to be confirmed. David Ciardi, chief scientist at NASA's Exoplanet Science Institute, says the KOI-5AB was abandoned, because it was complicated, and we had thousands of candidates, and we were learning something new every day from Kepler, so that the KOI  Mostly forgot to -5. KOI-5Ab is part of the Triple Star system, where KOI-5 is a group of three st...

NASA's Spitzer Space Telescope will be closed.

NASA briefly informed that the Spitzer Space Telescope will be permanently discontinued on January 30, 2020. After about 16 years of discovering the universe in light energy.  And by that time, the space shuttle has been working for more than 11 years beyond its prime mission, Spitzer examines the universe's various objects in infrared light.  It was in 2003 through the rocket that the American Space Research Organization NASA entered the space and entered the orbit around the Earth.  Spitzer rotates the sun on a path similar to that of the Earth but it runs a bit slower.  Today it is about 158 ​​million miles (254 million kilometers) away from our planet - more than 600 times the distance between Earth and Moon.  The spacing of Spitzer's orbit curve means that when the spacecraft indicates its fixed antenna on the earth to download data or receive commands, its solar panels tend to lean away from the sun.  During those periods, to operate the space shut...

SpaceX is launching its next dragon spacecraft.

SpaceX is preparing for its next mission, very soon Spacex will launch the Dragon Spacecraft with its Falcon 9 Rocket.   SpaceX is the 18th commercial reproduction service mission, dragon spacecraft will be loaded with dozens of experiments made in space.  Launch date: Sunday, July 21, 2019 at 7:35 pm  International Space Station (ISS) us  The National Laboratory SpaceX's dragon is giving a finalization to more than two dozen payloads for launch in a circular circular laboratory.  Many of these payloads are aimed at improving human health on the earth, many of which are focused on drug development.  In addition, a series of payloads from identified private sector partners will be launched on this mission.  More than 40 student experiments and demonstrations have been included on the 18th Commercial Recepti Services Mission (CRS-18) of SpaceX.  One part of ISS American National Laboratory's goal is to encourage and engage next generation scientists.                          ...