Skip to main content

NASA's planetary radar took some pictures of the slowly rotating asteroid 2008 OS7 for the purpose of observation.

 


In the lead-up to its close encounter with Earth on Feb. 2, asteroid 2008 OS7 was meticulously observed through a series of images taken by the formidable 230-foot Goldstone Solar System Radar antenna near Barstow, California.


As asteroid 2008 OS7 approached Earth on Feb. 2, NASA's Deep Space Network planetary radar provided unprecedented detailed images of the stadium-sized celestial body. Despite its safe distance of about 1.8 million miles – roughly 7 ½ times the Earth-Moon distance – there was no threat of impact. Scientists at NASA's Jet Propulsion Laboratory in Southern California utilized a potent radio antenna to analyze the size, rotation, shape, and surface characteristics of this near-Earth object (NEO). Prior to this close encounter, the asteroid had been beyond the reach of planetary radar systems for imaging.


Unveiled on July 30, 2008, the asteroid came into view during routine searches for Near-Earth Objects (NEOs) conducted by the NASA-funded Catalina Sky Survey, based at the University of Arizona in Tucson. Post-discovery, meticulous observations of the reflected light from the asteroid's surface disclosed its dimensions, estimating a width ranging from 650 to 1,640 feet (200 to 500 meters). Additionally, the celestial body exhibited a relatively leisurely rotation, completing one revolution approximately every 29 ½ hours.


Petr Pravec, situated at the Astronomical Institute of the Czech Academy of Sciences in Ondřejov, Czech Republic, played a pivotal role in establishing the rotational period of 2008 OS7. This determination involved observing the asteroid's light curve, depicting variations in its brightness over time. As the asteroid rotates, alterations in its shape cause fluctuations in the reflected light observed by astronomers. These changes are meticulously recorded to unravel the precise period of the asteroid's rotation, providing valuable insights into its dynamic characteristics.


Observations of Asteroid 2008 OS7 by Goldstone Radar.


On Feb. 2, the Jet Propulsion Laboratory's radar group employed the formidable 230-foot Goldstone Solar System Radar antenna dish at the Deep Space Network's facility near Barstow, California, to capture detailed images of the approaching asteroid. Analysis revealed a diverse surface, featuring a combination of rounded and angular regions, including a small concavity. Contrary to prior estimates, the asteroid's revised size was determined to be approximately 500 to 650 feet (150 to 200 meters) wide, and its rotation was confirmed to be exceptionally sluggish.


In addition to imaging, the Goldstone radar observations played a crucial role by furnishing essential measurements of the asteroid's distance from Earth during its passage. These measurements are instrumental for scientists at NASA's Center for Near Earth Object Studies (CNEOS) to enhance precision in calculating the asteroid's orbital trajectory around the Sun. Orbiting the Sun every 2.6 years, asteroid 2008 OS7 traverses from within the orbit of Venus to its farthest point beyond the orbit of Mars.


Managed by JPL, NASA's Center for Near Earth Object Studies (CNEOS) diligently calculates the orbits of every known Near-Earth Object (NEO), offering vital assessments of potential impact hazards. Owing to its orbit's proximity to Earth and its size, asteroid 2008 OS7 is categorized as a potentially hazardous asteroid. Notably, the close approach on Feb. 2 represents the closest encounter it will have with our planet for at least the next 200 years.While NASA monitors NEOs across various sizes, Congress has mandated the agency to focus on detecting and tracking objects sized 460 feet (140 meters) and larger. This emphasis addresses the potential for significant ground damage in the event of an impact on Earth.


Backing the efforts of the Goldstone Solar System Radar Group and CNEOS, NASA's Near-Earth Object Observations Program operates under the Planetary Defense Coordination Office at the agency's headquarters in Washington. The program ensures systematic surveillance and analysis of potential impact threats. The Deep Space Network, integral to these initiatives, is subject to programmatic oversight by the Space Communications and Navigation (SCaN) program office within the Space Operations Mission Directorate, also headquartered in Washington. For further insights into planetary radar, CNEOS, and near-Earth objects, additional information can be accessed at NASA's Asteroid Watch.





Comments

Popular posts from this blog

In the triple-star system, KOI-5Ab is seen orbiting the primary star...

  KOI-5Ab continues to be a topic of discussion for researchers, as koi-5Ab has been seen orbiting the primary Star, confirming it has also been announced.  koi-5ab revolves around the primary star, it was thought to be a planet half the size of Saturn in a planetary system, and was the only other planet candidate to be detected by the KOI-5Ab mission. Kepler mission operations were initiated by NASA in 2009, by the end of spacecraft operations in 2018, the Kepler spacecraft had discovered 2,394 exoplanets, or planets orbiting stars beyond our sun, and about 2,366 exoplanets such  There are also those, which are still to be confirmed. David Ciardi, chief scientist at NASA's Exoplanet Science Institute, says the KOI-5AB was abandoned, because it was complicated, and we had thousands of candidates, and we were learning something new every day from Kepler, so that the KOI  Mostly forgot to -5. KOI-5Ab is part of the Triple Star system, where KOI-5 is a group of three st...

NASA's Spitzer Space Telescope will be closed.

NASA briefly informed that the Spitzer Space Telescope will be permanently discontinued on January 30, 2020. After about 16 years of discovering the universe in light energy.  And by that time, the space shuttle has been working for more than 11 years beyond its prime mission, Spitzer examines the universe's various objects in infrared light.  It was in 2003 through the rocket that the American Space Research Organization NASA entered the space and entered the orbit around the Earth.  Spitzer rotates the sun on a path similar to that of the Earth but it runs a bit slower.  Today it is about 158 ​​million miles (254 million kilometers) away from our planet - more than 600 times the distance between Earth and Moon.  The spacing of Spitzer's orbit curve means that when the spacecraft indicates its fixed antenna on the earth to download data or receive commands, its solar panels tend to lean away from the sun.  During those periods, to operate the space shut...

SpaceX is launching its next dragon spacecraft.

SpaceX is preparing for its next mission, very soon Spacex will launch the Dragon Spacecraft with its Falcon 9 Rocket.   SpaceX is the 18th commercial reproduction service mission, dragon spacecraft will be loaded with dozens of experiments made in space.  Launch date: Sunday, July 21, 2019 at 7:35 pm  International Space Station (ISS) us  The National Laboratory SpaceX's dragon is giving a finalization to more than two dozen payloads for launch in a circular circular laboratory.  Many of these payloads are aimed at improving human health on the earth, many of which are focused on drug development.  In addition, a series of payloads from identified private sector partners will be launched on this mission.  More than 40 student experiments and demonstrations have been included on the 18th Commercial Recepti Services Mission (CRS-18) of SpaceX.  One part of ISS American National Laboratory's goal is to encourage and engage next generation scientists.                          ...