Skip to main content

The Webb telescope studied the birth of a giant cluster.

 



The image captured by the NASA/ESA/CSA James Webb Space Telescope showcases the H II region N79 in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, composed of ionized interstellar atomic hydrogen, is observed through Webb's Mid-InfraRed Instrument (MIRI). N79, a vast star-forming complex spanning about 1630 light-years in the largely unexplored southwest region of the LMC, is considered a younger counterpart to the well-known 30 Doradus (Tarantula Nebula), another recent target of the Webb telescope. Research indicates that N79 has exhibited a star formation efficiency twice that of 30 Doradus over the past 500,000 years.


This specific image focuses on N79 South (S1), one of the three giant molecular cloud complexes. The pronounced 'starburst' pattern surrounding the bright object is a result of diffraction spikes, common artifacts in telescopes using mirrors to collect light, such as the James Webb Space Telescope (Webb). In Webb's case, the hexagonal symmetry of its 18 primary mirror segments produces six prominent starburst spikes. These patterns are particularly noticeable around intensely bright and compact objects where light originates from a single source. Most galaxies, despite appearing small to our eyes, lack the brightness and concentration to exhibit such patterns.


In the MIRI-captured longer wavelengths of light, the James Webb Space Telescope reveals the glowing gas and dust within N79, showcasing the region's intricate details. Mid-infrared light, unlike shorter wavelengths, penetrates deeper into the clouds, avoiding absorption or scattering by dust grains in the nebula. Notably, some protostars that are still embedded in the region are visible in this field.


Astronomers find star-forming regions like N79 intriguing because their chemical composition resembles that of massive star-forming regions observed when the Universe was only a few billion years old, during the peak of star formation. Unlike star-forming regions in our Milky Way, which are not producing stars at the same intense rate as N79 and have a different chemical composition, N79 offers a unique opportunity for astronomers to study and compare star formation. Webb's deep observations of distant galaxies in the early Universe further enhance this comparative analysis.


The observations of N79 are part of a comprehensive Webb program focused on studying the evolution of circumstellar discs and envelopes around forming stars, spanning a broad mass range and different evolutionary stages. Webb's exceptional sensitivity allows scientists to make groundbreaking detections, including the identification of planet-forming dust discs around stars with masses similar to that of our Sun, situated in the Large Magellanic Cloud. In this image, various wavelengths are represented: 7.7-micron light in blue, 10 microns in cyan, 15 microns in yellow, and 21 microns in red. These wavelengths, captured through 770W, 1000W, 1500W, and 2100W filters respectively, provide valuable insights into the intricate details of the region's composition and structure.

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...