Skip to main content

NASA's IRIS Spots Nanosets observed that light shines when the solar corona is heated.


The Sun, whose mass is about 109 times more than our Earth, and as we know, the Sun is a ball of fire, whose life on earth is possible only with light. How much we know about the Sun, we know just as much as our scientists have discovered about the Sun.  Do you know, the atmosphere of the Sun is warmer than its surface, and it remains a mystery to scientists even today, how it is possible that its atmosphere is warmer than the surface of the Sun, to reveal the secret  Therefore, scientists are studying the Sun very closely.

In a paper published in Nature Astronomy on September 22, researchers reported the first clear images of nano-jets, the bright thin light that travels perpendicular to magnetic structures in the solar atmosphere, known as the corona. In another process, which reveals the existence of a single, potential coronal heating candidate nanofluors.

Researchers want to know the answer to those questions to understand why the Sun's atmosphere is so much warmer than the surface, and to help differentiate between a host of theories about the causes of this heating, researchers at NASA  Interface areas are heading towards imaging spectrograph (IRIS) missions.  IRIS is designed to be closely zoomed at specific hard-to-see events on the Sun.

The nanoflare is a very small incidental heating phenomenon that occurs in the sun's outer atmosphere. A nanoflare arises from a phenomenon of magnetic reconstruction, which nanoflares know as small explosions on the Sun, but they are difficult to spot.  Nanoflares They are very small, and very fast, meaning that they are difficult to eject against the sun's shiny surface. On April 3, 2014, known as the coronal rain event, as the currents of the cooled plasma fall from the corona to the surface of the sun, it appears almost like a giant waterfall, and the researchers show up at the end of the event  Having seen the bright jet. These are telltale flash nanosets, which travel so rapidly with hot plasma, that they appear on images, such as the bright thin lines seen within magnetic loops on the Sun, to make nano-jets "smoke."  Gun ", considered to be the prime proof of the presence of nanoflars. As we know, each nanojet is initiated by a process known as magnetic recombination, where twisted magnetic fields are reproduced explosively.  Researchers believe that, creating an avalanche of nanosets in the Sun's corona, one process can establish another recombination, which can generate an energy, causing the Sun's corona to warm.

In the sun's outer atmosphere, IRIS gathers its high-resolution images by focusing on a small part, and for this reason we consider a combination of observing a specific event to make educated guesses, and see the right place at the right time. Researchers first coordinated with NASA's Solar Dynamics Observatory (SDO) and Hinode Observatory, and Japan Aerospace Exploration Agency, ESA (European Space Agency) and NASA, once the nanostates were identified against the backdrop of coronal rain. There was a partnership between  Under which looking closely at the Sun, and confirming whether they could detect nanosets, if yes, they could assess their effects on the corona.

Researchers looked at the Sun, observing many events, advanced simulations were combined with many observations.  The model suggests, that the nanonates were magnetic recombination and a guppy signature of the nanofluors, which contribute to coronal heating in the simulation. Researchers say that more studies need to be done to establish the frequency of nanosets and nanoflares in the Sun, and how much energy contributes to heating the solar corona.

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...