Skip to main content

How NASA scientists observe the sun at different wavelengths.


Sun is the biggest object of our solar system, and we all know how important sunlight is for us, what?  The sun can be tested by the sun's rays, yes, because NASA scientists observe the sun at different wavelengths. When a photograph of the sun was taken with a standard camera, this familiar image shows a yellow, featureless disk that would have a red wavelength when the sun's rays entered the Earth's atmosphere, because it would be  The pass loses blue wavelength.

The sun can, in fact, emit its light in all colors, the sun's yellow is the brightest wavelength, because it is the color we see with our naked eyes, and it also represents the camera. Scientific tests are carried out from the Earth by special instruments, in space telescopes, observing the light beyond the limits, visible with the naked eye, and sciatic about different components of the sun's surface and atmosphere from different wavelengths. Information comes out, scientists use them to paint the whole picture of different stars.

As we can see in the image, that colors float around the sun, we should note that the same area of ​​the sun looks different, as each wavelength of light represents the solar material at a specific temperature. We can extract information from wavelengths using two methods, one way is that by using a spectrometer, we can observe and measure multiple wavelengths of light simultaneously. And the same we can use the ranges, all around the sun  On the other hand, temperature and material display, it helps to form a composite.

The second approach is that SDO scientists have chosen 10 different wavelengths to observe for their atmospheric imaging assembly (AIA) instrument, and each wavelength is largely based on a single, and two, type of ions  Is, scientists chose each wavelength to illuminate a particular part of the sun's atmosphere.

4500: showing the sun's surface or photosphere. 
1700: show, the surface of the sun is a layer of the sun's atmosphere called the chromosphere, which lies just above the photosphere and is also where the temperature starts rising. 
1600: show's  A mixture between the upper photosphere and what is called the transition region, a region between the chromosphere and the uppermost layer of the sun's atmosphere is called the halo, The transition zone is where the temperature rises rapidly. 
304: This light is emitted from the chromosphere and the transition region. 
71: This wavelength represents the sun's atmosphere, or corona, when it is cool.  It shows a slightly warmer area of ​​the corona, and also much warmer material of a solar flare.
211 :: This shows the wavelength of the hot, magnetically active fields in the sun's corona.
335 It also has giant magnetic arcs coronal loops  Shows known as .
193: also shows the wavelengths of hot, magnetically active fields in corona 
94: This highlighted areas of the corona during a solar flare.
131: The hottest material in a flare.

Comments

Popular posts from this blog

NASA/ESA Hubble Space Telescope Reveals New Details of the Orion Nebula’s Star Formation.

  This NASA/ESA Hubble Space Telescope image captures the Orion Nebula (Messier 42, M42), the nearest star-forming region to Earth, located about 1,500 light-years away. A captivating new image captured by the NASA/ESA Hubble Space Telescope offers an extraordinary look into the Orion Nebula, the nearest massive star-forming region to Earth. Located just 1,500 light-years away, this nebula is visible to the naked eye below the three stars forming Orion's "belt." The region is home to hundreds of newborn stars, including two protostars featured in the image: HOPS 150 and HOPS 153. Named after the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory, the protostars HOPS 150 and HOPS 153 provide key insights into the early stages of star formation. HOPS 150, visible in the upper-right corner of the image, is a binary star system, with two young stars orbiting one another. These protostars are surrounded by small dusty disks, where material from th...

New Method Detects Small Asteroids in Main Belt, Offering Insight for Planetary Defense.

  An international team of physicists, led by MIT researchers, has developed a groundbreaking method to detect small asteroids, as small as 10 meters in diameter, within the main asteroid belt. These space rocks, ranging from the size of a bus to several stadiums wide, were previously undetectable using traditional methods. The team's discovery, detailed in a paper published in Nature, could significantly improve tracking of potential asteroid impactors, aiding planetary defense efforts. The main asteroid belt, located between Mars and Jupiter, is home to millions of asteroids, but until now, scientists could only detect objects roughly a kilometer in diameter. The new detection technique, which utilizes the "shift and stack" method, is able to identify much smaller asteroids, even those far from Earth, enabling more precise orbital tracking. This breakthrough is crucial for planetary defense, allowing scientists to spot near-Earth objects that may pose a threat in the fu...

XSPECT Payload Successfully Validates Performance through Cas A Observation.

  The XSPECT instrument captures a detailed spectrum of the supernova remnant Cassiopeia A (Cas A), encompassing both the Galactic Cosmic Ray (GCR) background and the Cosmic X-ray Background (CXB). The flux observed above 8 keV predominantly results from the combined contributions of CXB and GCR. The presented spectrum, depicted in the figure, is derived from a cumulative integration time of 20 ksec, collected across multiple orbits, providing valuable insights into the X-ray emissions associated with Cas A. XPoSat, India's inaugural X-ray polarimetric mission, has achieved a significant as the XSPECT instrument captures its initial observations from the Cassiopeia A (Cas A) supernova remnant. Launched on January 1, 2024, XPoSat is equipped with two co-aligned instruments, namely the POLarimeter Instrument in X-rays (POLIX) and X-ray SPECtroscopy and Timing (XSPECT). This mission is designed to unravel the mysteries of cosmic X-ray sources. While POLIX focuses on examining X-ray po...